z-logo
open-access-imgOpen Access
Data-mining approach to investigate sedimentation features in combined sewer overflows
Author(s) -
Marco Carbone,
Luigi Berardi,
Daniele Laucelli,
Patrizia Piro
Publication year - 2011
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2011.003
Subject(s) - sedimentation , settling , suspended solids , flocculation , hydrology (agriculture) , field (mathematics) , environmental science , environmental engineering , geotechnical engineering , engineering , mathematics , geology , sediment , wastewater , geomorphology , pure mathematics
Sedimentation is the most common and effectively practiced method of urban drainage control in terms of operating installations and duration of service. Assessing the percentage of suspended solids removed after a given detention time is essential for both design and management purposes. In previous experimental studies by some of the authors, the expression of iso-removal curves (i.e. representing the water depth where a given percentage of suspended solids is removed after a given detention time in a sedimentation column) has been demonstrated to depend on two parameters which describe particle settling velocity and flocculation factor. This study proposes an investigation of the influence of some hydrological and pollutant aggregate information of the sampled events on both parameters. The Multi-Objective (EPR-MOGA) and Multi-Case Strategy (MCS-EPR) variants of the Evolutionary Polynomial Regression (EPR) are originally used as data-mining strategies. Results are proved to be consistent with previous findings in the field and some indications are drawn for relevant practical applicability and future studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom