z-logo
open-access-imgOpen Access
Flood forecasting using support vector machines
Author(s) -
Dawei Han,
Lily Y. L. Chan,
Nan Zhu
Publication year - 2007
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2007.027
Subject(s) - support vector machine , artificial neural network , computer science , flood myth , kernel (algebra) , benchmarking , machine learning , artificial intelligence , selection (genetic algorithm) , nonlinear system , flood forecasting , function (biology) , data mining , mathematics , geography , physics , archaeology , combinatorics , marketing , quantum mechanics , evolutionary biology , business , biology
This paper describes an application of SVM over the Bird Creek catchment and addresses some important issues in developing and applying SVM in flood forecasting. It has been found that, like artificial neural network models, SVM also suffers from over-fitting and under-fitting problems and the over-fitting is more damaging than under-fitting. This paper illustrates that an optimum selection among a large number of various input combinations and parameters is a real challenge for any modellers in using SVMs. A comparison with some benchmarking models has been made, i.e. Transfer Function, Trend and Naive models. It demonstrates that SVM is able to surpass all of them in the test data series, at the expense of a huge amount of time and effort. Unlike previous published results, this paper shows that linear and nonlinear kernel functions (i.e. RBF) can yield superior performances against each other under different circumstances in the same catchment. The study also shows an interesting result in the SVM response to different rainfall inputs, where lighter rainfalls would generate very different responses to heavier ones, which is a very useful way to reveal the behaviour of a SVM model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom