z-logo
open-access-imgOpen Access
Development of a discharge equation for side weirs using artificial neural networks
Author(s) -
Mohamed Khorchani,
Olivier Blanpain
Publication year - 2005
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2005.0004
Subject(s) - weir , artificial neural network , perceptron , calibration , flow (mathematics) , computer science , discharge coefficient , multilayer perceptron , artificial intelligence , engineering , mathematics , statistics , mechanical engineering , geometry , cartography , nozzle , geography
Flow over a side weir is one of the more complex flows to simulate in one-dimensional unsteady flow analysis. Various experiments have been applied, but no agreement is apparent in the literature about the best method. In this study, an Artificial Neural Network model has been used to extract a discharge equation for side weirs which accurately estimates overflow discharges. The proposed methodology gives the advantage of accounting for both the geometric and hydraulic characteristics of the overflow structure. The developed model is calibrated and validated using experimental data. Model calibration is achieved by using a Multi-Layer Perceptron (MLP), trained with the back-propagation algorithm. In order to highlight the advantage of the developed model over an existing model widely in use, the model’s performance is evaluated according to three comparison criteria. The provided results clearly reflect the ability of the developed model to overcome the weakness of conventional models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom