z-logo
open-access-imgOpen Access
A multiple linear regression GIS module using spatial variables to model orographic rainfall
Author(s) -
Steven Naoum,
Ioannis K. Tsanis
Publication year - 2004
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2004.0004
Subject(s) - kriging , linear regression , multivariate interpolation , precipitation , interpolation (computer graphics) , regression , spatial analysis , regression analysis , longitude , latitude , linear interpolation , statistics , mathematics , environmental science , computer science , meteorology , geography , geodesy , pattern recognition (psychology) , artificial intelligence , bilinear interpolation , motion (physics)
This paper aims to document the development of a new GIS-based spatial interpolation module that adopts a multiple linear regression technique. The functionality of the GIS module is illustrated through a test case represented by the island of Crete, Greece, where the models generated were applied to locations where estimates of annual precipitation were required. The response variable is ‘precipitation’ and the predictor variables are ‘elevation’, ‘longitude’ and ‘latitude’, or any combination of these. The module is capable of performing a sequence of tasks which will eventually lead to an estimation of mean areal precipitation and the total volume of precipitation. In addition, it can generate up to nine predictor variables and their parameters, and can estimate areal rainfall for a user-specified three-dimensional extent. The developed module performed satisfactorily. Precipitation estimates at ungauged locations were obtained using the multiple linear regression method in addition to some conventional spatial interpolation techniques (i.e. IDW, Spline, Kriging, etc.). The multiple linear regression models provided better estimates than the other spatial interpolation techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom