z-logo
open-access-imgOpen Access
Chemo-Preventive Functions of Grape Seed Proanthocyanidin Extract against UV-Induced Intracellular Oxidative Stress and Tyrosinase Activity
Author(s) -
Lei Shi,
Hua-Lin Tang,
Suling Xu
Publication year - 2018
Publication title -
journal of the brazilian chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.337
H-Index - 70
eISSN - 1678-4790
pISSN - 0103-5053
DOI - 10.21577/0103-5053.20180098
Subject(s) - oxidative stress , tyrosinase , proanthocyanidin , chemistry , grape seed , intracellular , food science , oxidative damage , traditional medicine , antioxidant , biochemistry , polyphenol , medicine , enzyme
Clinical studies have identified that an excessive exposure of UV light can cause oxidative stress (OS) and tyrosinase enzyme over-expression, which are associated with multiple diseases including atherosclerosis, cancers, diabetics, rheumatoid arthritis. In this study, we investigated the impact of grape seed proanthocyanidin (GSPE) on regulating OS and tyrosinase activity in human epidermal melanocytes. This study revealed that GSPE did not affect cell viability and protected cells from UV induced damage in a dose-dependent manner. 5-(-6)-Carboxy-2,7-dichlorodihydro-fluorescein diacetate staining (i.e., a fluorescence staining for intracellular (OS)) indicated that GSPE reduced OS level caused by UV exposure. A similar trend was also confirmed by flow cytometry analysis, where GSPE down-regulated OS level. Tyrosinase analysis showed that GSPE treatment decreased tyrosinase activity. Taken all data together, GSPE may restore the cellular damage caused by excessive UV-exposure and promote skin health by reducing tyrosine generation. Clinically, GSPE could be potentially utilized for improving skin health against excessive UV exposure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom