z-logo
open-access-imgOpen Access
Knockdown of immature colon carcinoma transcript-1 inhibits proliferation of glioblastoma multiforme cells through Gap 2/mitotic phase arrest
Author(s) -
Shixin Gu,
Rong Xie,
Yichao Zhang,
Chao Shen,
Xiaoyun Cao,
Xiaoming Che
Publication year - 2015
Publication title -
oncotargets and therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.054
H-Index - 60
ISSN - 1178-6930
DOI - 10.2147/ott.s75864
Subject(s) - gene knockdown , small hairpin rna , cell cycle , cell growth , rna interference , cancer research , flow cytometry , propidium iodide , cell culture , biology , mitosis , cell , apoptosis , microbiology and biotechnology , chemistry , rna , programmed cell death , biochemistry , genetics , gene
"Glioblastoma multiforme" (GBM) is the frequent form of malignant glioma. Immature colon carcinoma transcript-1 (ICT1) is essential for cell vitality and mitochondrial function and has been recognized in several human cancers. In the study reported here, we attempted to evaluate the functional role of ICT1 in GBM cells. Lentivirus-mediated RNA interference (RNAi) was applied to silence ICT1 expression in human GBM cell lines U251 and U87. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-formation assays. Cell-cycle progression was determined by flow cytometry with propidium iodide staining. The results revealed that lentivirus-mediated short hairpin RNA (shRNA) can specifically suppress the expression of ICT1 in U251 and U87 cells. Functional investigations proved for the first time, as far as we are aware, that ICT1 knockdown significantly inhibited the proliferation of both cell lines. Moreover, the cell cycle of U251 cells was arrested at Gap 2 (G2)/mitotic (M) phase after ICT1 knockdown, with a concomitant accumulation of cells in the Sub-Gap 1 (G1) phase. This study highlights the crucial role of ICT1 in promoting GBM cell proliferation, and provides a foundation for further study into the clinical potential of lentivirus-mediated silencing of ICT1 for GBM therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom