z-logo
open-access-imgOpen Access
Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC
Author(s) -
Mark Agulnik,
Nelson,
Ziehr,
J R Johnson
Publication year - 2013
Publication title -
oncotargets and therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.054
H-Index - 60
ISSN - 1178-6930
DOI - 10.2147/ott.s23165
Subject(s) - afatinib , gefitinib , erlotinib , medicine , t790m , lung cancer , epidermal growth factor receptor , oncology , tyrosine kinase , egfr inhibitors , cancer research , osimertinib , tyrosine kinase inhibitor , erlotinib hydrochloride , cancer , receptor
The discovery of epidermal growth-factor receptor (EGFR)-activating mutations and the introduction of oral EGFR tyrosine kinase inhibitors (EGFR-TKIs) have expanded the treatment options for patients with non-small cell lung cancer. The first two reversible EGFR-TKIs, erlotinib and gefitinib, are approved for use in the first-line setting in patients with known EGFR-activating mutations and in the second- and third-line settings for all NSCLC patients. These first-generation EGFR-TKIs improve progression-free survival when compared to chemotherapy in patients with EGFR-activating mutations in the first-line setting. However, nearly all patients develop resistance to EGFR-directed agents. There is a need for further therapy options for patients with disease progression after treatment with reversible EGFR-TKIs. Afatinib is an irreversible ErbB family blocker that inhibits EGFR, HER2, and HER4. In vitro and in vivo, afatinib have shown increased inhibition of the common EGFR-activating mutations as well as the T790M resistance mutation when compared to erlotinib and gefitinib. Clinically, afatinib has been evaluated in the LUX-Lung series of trials, with improvement in progression-free survival reported in patients with EGFR-activating mutations in both first- and second-/third-line settings when compared to chemotherapy. Further investigation is needed to determine the precise role that afatinib will play in the treatment of patients with non-small cell lung cancer and EGFR-activating mutations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom