<p>Circular RNA <em>circ-Foxo3</em> induced cell apoptosis in urothelial carcinoma via interaction with <em>miR-191-5p</em></p>
Author(s) -
Chunyang Wang,
Weiyang Tao,
Shaobin Ni,
Qi-Yin Chen
Publication year - 2019
Publication title -
oncotargets and therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.054
H-Index - 60
ISSN - 1178-6930
DOI - 10.2147/ott.s215823
Subject(s) - foxo3 , bladder cancer , apoptosis , cancer research , in vivo , cancer , cancer cell , downregulation and upregulation , microbiology and biotechnology , medicine , chemistry , biology , gene , biochemistry , protein kinase b
Background Circular RNAs (circRNAs) play a critical role in cancer. Emerging evidence has shown circ-Foxo3, a circRNA, was dysregulated in a variety of tumor types. However, the exact role of circ-Foxo3 in bladder cancer has never been studied. Methods We measured the expression level of circ-Foxo3 in human and murine bladder cancer tissues and in various human bladder cancer cell lines. We induced bladder cancer in mice by a carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). circ-Foxo3 was overexpressed in mice by lentiviral gene transfer and in cultured cells via overexpression plasmid. The effect of circ-Foxo3 on apoptosis was examined via apoptotic marker staining, Western blot, and flow cytometry. We further characterized the interaction between circ-Foxo3 and miR-191 and its functional impact on bladder cancer cells. Results circ-Foxo3 was downregulated in bladder cancer in vivo and in vitro, and was upregulated in response to apoptotic stress. Overexpression of circ-Foxo3 promoted bladder cancer cell apoptosis in BBN mice and in human bladder cancer cell lines. miR-191-5p suppressed circ-Foxo3 expression and the pro-apoptotic effect of circ-Foxo3 in bladder cancer cells via directly targeting the 3ʹ-untranslated region (3ʹ-UTR) of circ-Foxo3. Conclusion circ-Foxo3 was downregulated in bladder cancer in vivo and in vitro, and promoted bladder cancer apoptosis via direct interaction with miR-191. circ-Foxo3 could be a potential therapeutic target for bladder cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom