A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase
Author(s) -
Davies,
David Christmas,
John Potokar
Publication year - 2011
Publication title -
neuropsychiatric disease and treatment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 67
eISSN - 1178-2021
pISSN - 1176-6328
DOI - 10.2147/ndt.s17573
Subject(s) - indoleamine 2,3 dioxygenase , medicine , inflammation , depression (economics) , immunology , biochemistry , tryptophan , biology , macroeconomics , amino acid , economics
This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom