Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents
Author(s) -
Eli J. Fine,
Lijie Grace Zhang,
Hicham Fenniri,
Thomas J Webster
Publication year - 2009
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s5589
Subject(s) - nanotube , materials science , titanium , nanotechnology , endothelial stem cell , biomedical engineering , biophysics , medicine , carbon nanotube , chemistry , biology , biochemistry , metallurgy , in vitro
One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs) on conventional vascular stent materials (specifically, titanium) for improving vascular stent applications. Rosette nanotubes (RNTs) are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT-K), even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT-K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells) suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom