Long-acting inhalable chitosan-coated poly(lactic-co-glycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes
Author(s) -
Yu Seok Youn,
Ji Su Choi,
Changkyu Lee,
In-Soo Kim,
Kyung Taek Oh,
Lee,
Kang Choon Lee,
EunSeok Park
Publication year - 2013
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s48197
Subject(s) - plga , chitosan , glycolic acid , chemistry , nanoparticle , zeta potential , nuclear chemistry , materials science , nanotechnology , lactic acid , organic chemistry , biology , bacteria , genetics
Inhalable glycol chitosan-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing palmitic acid-modified exendin-4 (Pal-Ex4) (chitosan Pal-Ex4 PLGA NPs) were prepared and characterized. The surface morphology, particle size, and zeta potential of chitosan Pal-Ex4 PLGA NPs were investigated, and the adsorption and cytotoxicity of chitosan Pal-Ex4 PLGA NPs were evaluated in human lung epithelial cells (A549). Finally, the lung deposition characteristics and hypoglycemia caused by chitosan Pal-Ex4 PLGA NPs were evaluated after pulmonary administration in imprinting control region (ICR) and type 2 diabetic db/db mice. Results showed that chitosan Pal-Ex4 PLGA NPs were spherical, compact and had a diameter of ~700 nm and a positive surface charge of +28.5 mV Chitosan-coated PLGA NPs were adsorbed onto A549 cells much more so than non-coated PLGA NPs. Pal-Ex4 release from chitosan-coated PLGA NPs was delayed by as much as 1.5 days as compared with chitosan-coated Ex4 PLGA NPs. In addition, chitosan-coated PLGA NPs remained in the lungs for ~72 hours after pulmonary administration, whereas most non-coated PLGA NPs were lost at 8 hours after administration. Furthermore, the hypoglycemic efficacy of inhaled chitosan Pal-Ex4 PLGA NPs was 3.1-fold greater than that of chitosan Ex4 PLGA NPs in db/db mice. The authors believe chitosan Pal-Ex4 PLGA NPs have considerable potential as a long-acting inhalation delivery system for the treatment of type 2 diabetes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom