z-logo
open-access-imgOpen Access
Development of novel cationic chitosan- and anionic alginate–coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol
Author(s) -
Mario Sechi,
Sanna Vanna,
Anna Maria Roggio,
Siliani,
Piccinini Massimo,
Salvatore Marceddu,
Alberto Mariani
Publication year - 2012
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s36684
Subject(s) - plga , chitosan , nanocarriers , controlled release , nanoparticle , zeta potential , polyelectrolyte , materials science , resveratrol , nanocapsules , nuclear chemistry , chemistry , chemical engineering , polymer , nanotechnology , organic chemistry , biochemistry , engineering
Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom