z-logo
open-access-imgOpen Access
Effect of interaction of magnetic nanoparticles of Fe3O4 and artesunate on apoptosis of K562 cells
Author(s) -
Baoan Chen
Publication year - 2011
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s19723
Subject(s) - survivin , apoptosis , k562 cells , artesunate , flow cytometry , cytotoxicity , chemistry , downregulation and upregulation , microbiology and biotechnology , mtt assay , western blot , in vitro , biology , biochemistry , immunology , malaria , gene , plasmodium falciparum
The present study evaluated whether the magnetic nanoparticles of Fe(3)O(4) (MNPs-Fe(3)O(4)) could enhance the activity of artesunate (ART), and to explore its potential mechanisms. Cytotoxicity of the copolymer of ART with MNPs-Fe(3)O(4) on K562 cells was detected by MTT assay and the apoptosis rate of K562 cells was measured by flow cytometry. Protein expression levels of bcl-2, bax, bcl-rambo, caspase-3, and survivin in K562 cells were measured by Western blot. After being incubated with the copolymer of ART with MNPs-Fe(3)O(4) for 48 hours, the growth inhibition rate of K562 cells was significantly increased compared with that of K562 cells treated with ART alone (P < 0.05), and the apoptosis rate of K562 cells was increased significantly compared with that of K562 cells treated with ART alone, suggesting that MNPs-Fe(3)O(4) can enhance the activity of ART. Interestingly, the copolymer-induced cell death was attenuated by caspase inhibitor Z-VAD-FMK. Our results also showed that treatment with the copolymer of MNPs-Fe(3)O(4) and ART increased the expression of bcl-2, bax, bcl-rambo, and caspase-3 proteins, and decreased the expression of survivin protein in K562 cells compared with ART treatment alone. These results suggest that MNPs-Fe(3)O(4) can enhance ART-induced apoptosis, which may be related to the upregulation of bcl-rambo and downregulation of survivin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom