z-logo
open-access-imgOpen Access
Molecular buffer using a PANDA ring resonator for drug delivery use
Author(s) -
P.P. Yupapin,
Nathaporn Suwanpayak,
Ma,
Aziz,
Ali -
Publication year - 2011
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s17772
Subject(s) - resonator , optical tweezers , router , materials science , buffer (optical fiber) , wavelength , scattering , optoelectronics , tweezers , ring (chemistry) , optics , nanotechnology , physics , computer science , chemistry , telecommunications , computer network , organic chemistry
A novel design of molecular buffer for molecule storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecules can be trapped and moved (transported) dynamically within the wavelength router or network, ie, a molecular buffer. This can be performed within the wavelength router before reaching the required destination. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is available for molecule storage and transportation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom