z-logo
open-access-imgOpen Access
Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles
Author(s) -
Żΰ
Publication year - 2010
Publication title -
international journal of nanomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.245
H-Index - 128
eISSN - 1178-2013
pISSN - 1176-9114
DOI - 10.2147/ijn.s12918
Subject(s) - paclitaxel , bovine serum albumin , folate receptor , zeta potential , targeted drug delivery , drug delivery , in vitro , nanoparticle , chemistry , drug carrier , albumin , drug , fluorescein isothiocyanate , biophysics , materials science , pharmacology , biochemistry , cancer cell , nanotechnology , cancer , organic chemistry , medicine , biology , physics , quantum mechanics , fluorescence
Paclitaxel (Taxol(®)) is an important anticancer drug in clinical use for treatment of a variety of cancers. Because of its low solubility, it is formulated in high concentration in Cremophor EL(®) which induces hypersensitivity reactions. In this study, targeted delivery of paclitaxel-loaded nanoparticles was prepared by a desolvation procedure, crosslinked on the wall material of bovine serum albumin, and subsequently decorated by folic acid. The characteristics of the nanoparticles, such as amount of folate conjugation, surface morphology, drug entrapment efficiency, drug loading efficiency, and release kinetics were investigated in vitro. The targeting effect was investigated in vitro by cancer cell uptake of fluorescein isothiocyanate-labeled nanoparticles. The spherical nanoparticles obtained were negatively charged with a zeta potential of about -30 mV, and characterized around 210 nm with a narrow size distribution. Drug entrapment efficiency and drug loading efficiency were approximately 95.3% and 27.2%, respectively. The amount of folate conjugation was 9.22 μg/mg of bovine serum albumin. The folate-decorated nanoparticles targeted a human prostate cancer cell line effectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom