z-logo
open-access-imgOpen Access
Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering
Author(s) -
Josh Neman,
Amanda Hambrecht,
Rahul Jandial,
Cadry
Publication year - 2012
Publication title -
biologics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.948
H-Index - 38
eISSN - 1177-5491
pISSN - 1177-5475
DOI - 10.2147/btt.s22407
Subject(s) - mesenchymal stem cell , spinal fusion , medicine , stem cell , scaffold , bone healing , arthrodesis , transplantation , regeneration (biology) , surgery , biomedical engineering , pathology , biology , microbiology and biotechnology , alternative medicine
Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom