z-logo
open-access-imgOpen Access
RPA-PCR Couple: an Approach to Expedite Plant Diagnostics and Overcome PCR Inhibitors
Author(s) -
Mustafa Ahmad Munawar,
Frank N. Martin,
Anna Toljamo,
Hanna Kokko,
Elina Oksanen
Publication year - 2020
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2020-0065
Subject(s) - computational biology , molecular diagnostics , polymerase chain reaction , biology , virology , genetics , gene
DNA extraction can be lengthy and sometimes ends up with amplification inhibitors. We present the potential of recombinase polymerase amplification (RPA) to replace plant DNA extraction. In our rapid ‘RPA-PCR couple’ concept, RPA is tuned to slower reaction kinetics to promote amplification of long targets. RPA primers amplify target and some flanking regions directly from simple plant macerates. Then PCR primers exponentially amplify the target directly from the RPA reaction. We present the coupling of RPA with conventional, TaqMan and SYBR Green PCR assays. We applied the concept to strawberry Phytophthora pathogens and the Phytophthora identification marker atp9-nad9. We found RPA-PCR couple specific, sensitive and reliable. The approach may also benefit other difficult samples such as food, feces and ancient samples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom