An improved gene synthesis method with asymmetric directions of oligonucleotides designed using a simulation program
Author(s) -
Kotetsu Kayama,
Hibiki Hashizume,
Gerry Amor Camer,
Daiji Endoh
Publication year - 2020
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2020-0062
Subject(s) - oligonucleotide , computer science , computational biology , gene , biology , genetics
Artificial gene synthesis based on oligonucleotide augmentation is known as overlap extension PCR which generates a variety of intermediate synthetic products. The orientation and concentration of oligomers can be adjusted to reduce the synthesis of intermediates and optimize the full-length process of DNA synthesis, using a simulation program for serial oligomer extension. The efficiency of the serial oligomer extension process is predicted to be greatest when oligomers are in a ‘forward-reverse-reverse-reverse’ direction. Oligomers with such designed directions demonstrated generation of the desired product in the shortest time (number of cycles) by repeated annealing and elongation. This method, named Asymmetric Extension supported by a Simulator for Oligonucleotide Extension (AESOE), has shown efficiency and effectiveness with potentials for future improvements and optimal usage in DNA synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom