A Simple in Silico Approach to Generate Gene-Expression Profiles from Subsets of Cancer Genomics Data
Author(s) -
Mohammed Khurshed,
Remco J. Molenaar,
Cornelis J.F. Van Noorden
Publication year - 2019
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2018-0179
Subject(s) - informatics , genomics , in silico , computational biology , computer science , data integration , gene expression profiling , bioinformatics , data science , biology , data mining , genome , gene , gene expression , genetics , electrical engineering , engineering
In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom