Oxford nanopore sequencing enables rapid discovery of single-domain antibodies from phage display libraries
Author(s) -
Michael J. Lowden,
Kevin A. Henry
Publication year - 2018
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2018-0123
Subject(s) - panning (audio) , minion , nanopore sequencing , phage display , computational biology , biology , single domain antibody , genomic library , massive parallel sequencing , dna sequencing , genetics , antibody repertoire , antibody , gene , base sequence , paleontology , zoom , lens (geology)
Antibody (Ab) repertoire sequencing using high-throughput massively parallel technologies has contributed substantially to the understanding of Ab responses following infection, vaccination and autoimmunity. Because individual B-cell receptors are recombined and diversified somatically, genomic comparisons are limited, and distinguishing rare variants from sequencing errors is a major challenge. Oxford Nanopore Technologies’ MinION is a highly portable and cost-effective third-generation sequencing instrument, but has not been used for Ab repertoire sequencing due to its high error rate (approximately 1/10 bases). Here, we applied nanopore sequencing to single-domain Ab (sdAb) repertoires and phage-displayed sdAb libraries. We show that despite low overall data fidelity, sdAb sequences could be reconstructed above a frequency threshold (∼100 copies); however, distinguishing clonal sdAb variants was not always possible. The data quality was sufficient to enable rapid identification of antigen-specific sdAb sequences enriched during panning of phage display libraries, obviating the need for screening single clones.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom