z-logo
open-access-imgOpen Access
Recent Advances in Photo-Crosslinkable Hydrogels for Biomedical Applications
Author(s) -
Jane Ru Choi,
Kar Wey Yong,
Jean Yu Choi,
Alistair C. Cowie
Publication year - 2019
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2018-0083
Subject(s) - self healing hydrogels , nanotechnology , gelatin , photopolymer , drug delivery , tissue engineering , materials science , ethylene glycol , hyaluronic acid , regenerative medicine , biomedical engineering , chemistry , polymer , polymer chemistry , engineering , polymerization , organic chemistry , biology , biochemistry , cell , composite material , genetics
Photo-crosslinkable hydrogels have recently attracted significant scientific interest. Their properties can be manipulated in a spatiotemporal manner through exposure to light to achieve the desirable functionality for various biomedical applications. This review article discusses the recent advances of the most common photo-crosslinkable hydrogels, including poly(ethylene glycol) diacrylate, gelatin methacryloyl and methacrylated hyaluronic acid, for various biomedical applications. We first highlight the advantages of photopolymerization and discuss diverse photosensitive systems used for the synthesis of photo-crosslinkable hydrogels. We then introduce their synthesis methods and review their latest state of development in biomedical applications, including tissue engineering and regenerative medicine, drug delivery, cancer therapies and biosensing. Lastly, the existing challenges and future perspectives of engineering photo-crosslinkable hydrogels for biomedical applications are briefly discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom