z-logo
open-access-imgOpen Access
Robust Evaluation of Intermolecular FRET Using a Large Stokes Shift Fluorophore as a Donor
Author(s) -
Carmen SantanaCalvo,
Francisco Romero,
Ignacio LópezGonzález,
Takuya Nishigaki
Publication year - 2018
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/btn-2018-0041
Subject(s) - förster resonance energy transfer , fluorophore , fluorescence , cyanine , chemistry , acceptor , stokes shift , alexa fluor , fluorescence anisotropy , physics , optics , condensed matter physics
Fluorescence (or Förster) resonance energy transfer (FRET) is a straightforward and sensitive technique to evaluate molecular interactions. However, most of the popular FRET pairs suffer cross-excitation of the acceptor, which could lead to false positives. To overcome this problem, we selected a large Stokes shift (LSS) fluorophore as a FRET donor. As a successful example, we employed a new FRET pair mAmetrine (an LSS yellow fluorescence protein)/DY-547 (a cyanine derivative) to substitute CFP/fluorescein that we previously employed to study molecular interactions between cyclic nucleotide-binding domains and cyclic nucleotides. The new FRET pair is practically free of cross-excitation of the acceptor. Namely, a change in the fluorescence spectral shape implies evidence of FRET without other control experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom