Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity
Author(s) -
William W. Wilfinger,
Karol Mackey,
Piotr Chomczyński
Publication year - 1997
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/97223st01
Subject(s) - absorbance , ionic strength , nucleic acid , rna , chemistry , chromatography , spectrophotometry , buffer solution , dna , quantitative analysis (chemistry) , biochemistry , aqueous solution , gene
The ratio of absorbance at 260 and 280 nm (the A260/280 ratio) is frequently used to assess the purity of RNA and DNA preparations. Data presented in this report demonstrate significant variability in the RNA A260/280 ratio when different sources of water were used to perform the spectrophotometric determinations. Adjusting the pH of water used for spectrophotometric analysis from approximately 5.4 to a slightly alkaline pH of 7.5-8.5 significantly increased RNA A260/280 ratios from approximately 1.5 to 2.0. Our studies revealed that changes in both the pH and ionic strength of the spectrophotometric solution influenced the A260/280 ratios. In addition, the ability to detect protein contamination was significantly improved when RNA was spectrophotometrically analyzed in an alkaline solution. UV spectral scans showed that the 260-nm RNA absorbance maximum observed in water was shifted by 2 nm to a lower wavelength when determinations were carried out in Na2HPO4 buffer at a pH of 8.5. We found RNA A260/280 ratios to be more reliable and reproducible when these spectrophotometric measurements were performed at pH 8.0-8.5 in 1-3 mM Na2HPO4 buffer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom