Tracking and Quantitation of Retroviral-Mediated Transfer Using a Completely Humanized, Red-Shifted Green Fluorescent Protein Gene
Author(s) -
Rebecca R. Muldoon,
John Levy,
Steven R. Kain,
P. Kitts,
Charles J. Link
Publication year - 1997
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/97221rr03
Subject(s) - green fluorescent protein , biology , gene , transfection , microbiology and biotechnology , genetic enhancement , gene expression , cell culture , plasmid , in vitro , chinese hamster ovary cell , viral vector , gene transfer , in vivo , recombinant dna , genetics
We have developed murine retroviral vectors (RVs) containing an optimized green fluorescent protein (GFP) gene to study retroviral gene transfer and expression in living cells. We used the codon "humanized", "red-shifted" GFP gene, hGFP-S65T, a gain of function variant of the wild-type GFP from the jellyfish Aequorea victoria. We cloned the hGFP-S65T gene into the RV plasmid pLNCX (pLNChG65T). A stable amphotropic RV-producer cell line (VPC), designated LNChG65T VPC, was generated that exhibited bright fluorescence in greater than 95% of the cells. Human A375 melanoma cells and IGROV ovarian carcinoma cells transduced from LNCh-G65T VPC demonstrated high levels of fluorescence. The expression of a single integrated hGFP-S65T gene in eukaryotic cells provides a powerful tool to study gene transfer, expression and functional studies in vitro and in vivo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom