z-logo
open-access-imgOpen Access
Simple Enzymatic Means to Neutralize DNA Contamination in Nucleic Acid Amplification
Author(s) -
John Ashkenas,
James W. Dennis,
Chi Yip Ho
Publication year - 2005
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/05391st02
Subject(s) - amplicon , contamination , primer (cosmetics) , dna , biology , nucleic acid , reverse transcriptase , genomic dna , polymerase chain reaction , multiple displacement amplification , restriction enzyme , primer dimer , microbiology and biotechnology , computational biology , genetics , chemistry , dna extraction , gene , multiplex polymerase chain reaction , ecology , organic chemistry
Reverse transcription PCR (RT-PCR) is prone to false positives when contaminating DNA molecules are present at the start of a reaction. Contaminants that derive from earlier work using a given primer pair (carryover PCR products) are of particular concern when those primers are used routinely, as in clinical diagnostics or environmental monitoring. In addition, contamination by genomic DNA can significantly interfere with quantitative and qualitative analysis of RNAs by RT-PCR. Here we describe contaminant restriction (ConR), a method that can be used to neutralize carryover and genomic DNA contamination in RT-PCR studies. Restriction enzymes (REs) added to the amplification cocktail cleave contaminant DNA molecules while sparing the intended target nucleic acid. Restriction, reverse transcription, and amplification steps all take place in the same sealed vessel, thus avoiding any danger of recontamination. ConR eliminates carryover contamination in PCR without compromising target sequence amplification. Because the method is effective against both genomic and carryover contamination, it can be employed routinely in one-step RT-PCR, whatever the RNA target or the nature of the potential DNA contaminant. A variation of this decontamination method, amplicon primer site restriction (APSR), is effective specifically against carryover contamination. APSR, unlike ConR, can be applied during PCR-based amplification of DNA target molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom