Dual chromogenic reporter gene detection in mammalian cells with lacZ and arabinofuranosidase
Author(s) -
T Tsuchida,
William Berlin,
Brian Sauer
Publication year - 2004
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04376bm01
Subject(s) - chromogenic , reporter gene , transgene , lac operon , microbiology and biotechnology , gene , biology , gene expression , biochemistry , chemistry , chromatography
A New Enzyme on the Block Originally patented for more industrial uses, namely the hydrolysis of plant material into fermentable sugars, α-L-arabinofuranosidase has been reconceived as a tool for the molecular biologist. Tsuchida et al. (p. 896) demonstrate that this enzyme (encoded by the abfA gene), when used in conjunction with a synthetic substrate, Z-ara, can be detected and visualized in a manner identical to the ubiquitous LacZ system. They have further shown that cotransfection of abfA and LacZ—the latter linked to a nuclear localization signal—into NIH 3T3 cells yielded clearly different and distinguishable staining patterns: a blue cytoplasm from the Z-ara substrate and a red-purple nucleus resulting from hydrolysis of Magenta-Gal, an X-gal analog. No cross-reactivity of substrates was seen. The absence of α-L-arabinofuranosidase or its natural substrates in mammalian cells creates a system with very low background, allowing it potentially to replace LacZ in assays where high levels of endogenou...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom