Automated Multi-Well Device to Measure Transepithelial Electrical Resistances under Physiological Conditions
Author(s) -
Joachim Wegener,
Dimitri Abrams,
Wolfgang Willenbrink,
HansJoachim Galla,
Andreas Janshoff
Publication year - 2004
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04374st03
Subject(s) - capacitance , electrical impedance , cell , biomedical engineering , filter (signal processing) , cell culture , materials science , measure (data warehouse) , biological system , computer science , optoelectronics , biophysics , chemistry , electrode , electrical engineering , biology , engineering , biochemistry , data mining , computer vision , genetics
Measurement of transendothelial or transepithelial electrical resistances (TERs) is a straightforward in situ experimental approach to monitor the expression or modulation of barrier-forming cell-to-cell contacts (tight junctions) in cultured cells grown on porous filters. Although widely accepted, there is currently no device available to automatically measure the time course of TERs under ordinary cell culture conditions (37 degrees C, 5% or 10% CO2). This paper describes a development from our laboratory that is capable of following in parallel the TERs of several filter-grown cell layers with time and in an entirely computer-controlled fashion. The cell cultures can be followed even in long-term experiments without any manual assistance or opening of the incubator Besides reading TER values, this approach also returns the electrical capacitance of the cell layers, which is indicative of the expression of microvilli and other membrane extrusions. The device is based on reading the frequencydependent impedance of the cell layer, followed by equivalent circuit modeling to extract the cell-related parameters. It is compatible with several multi-well formats (up to 96 wells) and controlled by custom-designed software that reads, analyzes, and presents the data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom