Locking of 3′ ends of single-stranded DNA templates for improved Pyrosequencing™ performance
Author(s) -
Michael Utting,
Jochen Hampe,
Matthias Platzer,
Klaus Huse
Publication year - 2004
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04371st02
Subject(s) - template , primer extension , pyrosequencing , dna , oligonucleotide , biology , priming (agriculture) , computational biology , nucleotide , biophysics , primer (cosmetics) , biological system , chemistry , physics , nanotechnology , genetics , base sequence , materials science , gene , germination , botany , organic chemistry
In Pyrosequencing, a DNA strand complementary to a single-stranded DNA (ssDNA) template is synthesized, whereby each incorporated nucleotide yields detectable light, and the light intensity is proportional to the incorporated nucleotides. Correct data interpretation (i.e., signal-to-noise ratio of light intensities) is hampered by artifacts due to the formation of secondary structures of single-stranded templates. Critical among these is the looping back of the template's nonbiotinylated 3' end to itself In the resulting structure, the 3' end functions as a primer, the extension of which results in background signals. We present two ways of preventing the self-priming of a template's 3' end: (i) the use of a modified oligonucleotide, called blOligo, which is complementary to the template's 3' end and (ii) the extension of the template's 3' end with a ddNMP. In contrast to unprotected 3' ends of ssDNA templates, causing inconsistent results, we show that protecting the 3' end of an ssDNA template using either blOligos or ddNMP enables the correct interpretation of signals and results in reliable quantification.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom