High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol
Author(s) -
Shixuan Wu,
Geoffrey J. Letchworth
Publication year - 2004
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04361dd02
Subject(s) - pichia pastoris , dithiothreitol , transformation efficiency , electroporation , transformation (genetics) , pichia , chemistry , lithium (medication) , yeast , chromatography , biochemistry , enzyme , biology , gene , recombinant dna , endocrinology , agrobacterium
Transformation efficiencies for Pichia pastoris are usually several orders of magnitude below those for other yeast. We report here that pretreatment of P. pastoris with 0.1 M lithium acetate (LiAc) and 10 mM dithiothreitol (DTT) before electroporation increased transformation efficiency approximately 150-fold. DTT alone enhanced the transformation efficiency up to 20-fold, but LiAc alone had little effect. Cultures grown to 1.15-2.6 A at 600 nm had higher transformation efficiencies than younger or older cultures. A cell concentration of 10(10)/mL gave the highest efficiencies. Digestion of pPIC9K within the AOX1 gene with Sacl gave efficiencies approximately 30 times higher than digestion in other genes with other enzymes. Given the optimization of these factors, the highest transformation efficiency was obtained with instrument settings of 1.5 kV, 25 microF, and 186 omega. The transformation efficiency at optimal conditions reached 4 x 10(6) transformants/microgram DNA with pPIC9K. A maximum of 2.6 x 10(5) transformants was produced when 1 microgram of pPIC9K DNA was used.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom