z-logo
open-access-imgOpen Access
Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone
Author(s) -
Sheng Zhou,
Yang Zong,
Taihe Lu,
Brian P. Sorrentino
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03356ss04
Subject(s) - haematopoiesis , bone marrow , stem cell , progenitor cell , biology , mitoxantrone , population , microbiology and biotechnology , side population , atp binding cassette transporter , immunology , cancer research , pharmacology , transporter , medicine , chemotherapy , cancer stem cell , gene , biochemistry , genetics , environmental health
Hematopoietic stem cells (HSCs) express Mdr1a/1b and Bcrp1/Abcg2, which are members of the ATP binding cassette transporter family. Mice lacking both Mdr1-type genes (Mdr1a and Mdr1b) or Bcrp1 had normal hematopoietic development, but it has been unclear whether Mdr1a/1b and Bcrp1 play redundant roles in hematopoiesis. We generated a mouse model lacking both Mdr1a/1b and Bcrp1 expression (M-/-B-/-). The M-/-B-/- mice had normal numbers of peripheral blood cells, bone marrow colony-forming cells (CFCs) and colony-forming units-spleen (CFU-S), and demonstrated normal hematopoietic development. There was a near total elimination of side population (SP) cells in the bone marrow of M-/-B-/- mice compared to M+/+B-/- mice, primarily in the subpopulation lacking other HSC markers, which indicated that Mdr1a/1b was responsible for a small portion of SP cells that were mainly mature cells. Hematopoietic progenitor cells from the bone marrow of M-/-B-/- mice were more sensitive to mitoxantrone in vitro compared to either M-/-B+/+ or M+/+B-/- mice, suggesting that Mdr1a/1b and Bcrp1 may provide additive protection to HSCs against genotoxic agents. These studies demonstrate the lack of functional redundancy between these transporters for HSC development and further clarify their contributing role to the SP phenotype in HSCs and to intrinsic drug resistance within hematopoietic progenitor cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom