Fluorescent microplate-based analysis of protein-DNA interactions II: immobilized DNA
Author(s) -
Zhan-Ren Zhang,
Marcus D. Hughes,
Leonie J. Morgan,
Albert F. Santos,
Anna V. Hine
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03355st07
Subject(s) - dna , streptavidin , green fluorescent protein , zinc finger , lysis , microbiology and biotechnology , fluorescence , biochemistry , chemistry , biology , gene , biotin , physics , quantum mechanics , transcription factor
A simple protein-DNA interaction analysis has been developed using both a high-affinity/high-specificity zinc finger protein and a low-specificity zinc finger protein with nonspecific DNA binding capability. The latter protein is designed to mimic background binding by proteins generated in randomized or shuffled gene libraries. In essence, DNA is immobilized onto the surface of microplate wells via streptavidin capture, and green fluorescent protein (GFP)-labeled protein is added in solution as part of a crude cell lysate or protein mixture. After incubation and washing, bound protein is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.4 nM protein. The assay format is ideally suited to investigate the interactions of DNA binding proteins from within crude cell extracts and/or mixtures of proteins that may be encountered in protein libraries generated by codon randomization or gene shuffling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom