Avian retrovirus integrase-enhanced transgene integration into mammalian cell DNA in vivo
Author(s) -
Aqing Yao,
Roger Chiu,
Ajaykumar C. Vora,
David B. Brown,
Duane P. Grandgenett,
Brian R. Davis
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03355dd04
Subject(s) - integrase , biology , retrovirus , microbiology and biotechnology , thymidine kinase , transgene , dna , restriction enzyme , naked dna , restriction fragment , provirus , gene , virology , genetics , plasmid , genome , virus , herpes simplex virus
Systems for introducing DNA genes-of-interest into mammalian cellular genomes have ranged from the use of different physical techniques to viruses including retroviruses. We have developed a microinjection method for an efficient and permanent integration of a DNA transgene into the cell genome by use of the retrovirus integrase. A 3.0-kb linear DNA fragment containing an internal herpes simplex virus thymidine kinase gene (tk) with flanking avian retrovirus U5 and U3 terminal attachment sites (U5-pgk/tk-U3) recognized by the integrase was constructed. The other donor, a 3.3-kb linear DNA fragment containing the same gene (pgk/tk) flanked by ApaL1 restriction sites not recognized by integrase, was also produced. After assembly of integrase-transgene complexes on ice, the complexes were microinjected into the nucleus of human fibroblast cells (143Btk) containing a defective thymidine kinase. The number of hypoxanthine/aminopterin/thymidine (HAT)-resistant colonies produced upon microinjection of either naked DNA or the independently assembled integrase-transgene complexes were determined. Our data suggests that enhanced integration of U5-pgk/tk-U3 required the DNA attachment sites and co-delivery of integrase. The data was consistent with a direct role for both of these elements in producing an approximate 4-fold increase in the number of HAT-resistant colonies observed over microinjection of just naked U5-pgk/tk-U3 (P < 0.0001).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom