z-logo
open-access-imgOpen Access
Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers
Author(s) -
Natanya R. Civjan,
Timothy H. Bayburt,
Mary A. Schuler,
Stephen G. Sligar
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03353rr02
Subject(s) - solubilization , lipid bilayer , nanoscopic scale , chemistry , membrane , membrane protein , biochemistry , nanotechnology , materials science
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography. We show that formation of these Nanodiscs from insect cell membranes allows for the compartmentalization into soluble nanostructures that provide a natural membrane bilayer that avoids the aggregation of membrane proteins often encountered in other reconstitution procedures. Lipid composition analysis and substrate binding analysis of size-fractionated Nanodiscs arrayed in microtiter plates further demonstrates that the Nanodisc system effectively disperses the overexpressed membrane protein into monodispersed bilayers containing biochemically defined lipid components and the target protein in its native from suitable for sensitive high-throughput substrate binding analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom