z-logo
open-access-imgOpen Access
Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension
Author(s) -
Richard A. Fekete,
Mark J. Miller,
Dhruba K. Chattoraj
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03351rr01
Subject(s) - primer extension , oligonucleotide , extension (predicate logic) , primer (cosmetics) , computational biology , biology , protocol (science) , microbiology and biotechnology , genetics , dna , chemistry , base sequence , computer science , medicine , programming language , organic chemistry , alternative medicine , pathology
Identification of nucleotides used for RNA chain initiation or for contacting DNA binding proteins is basic to our understanding of gene regulation. Normally, a radioactive primer is used to copy RNA or DNA. The polymerase extension stops at free ends of mRNA (as in promoter mapping) or at the position of template cleavage or modification (as in footprinting). The locations of these positions are then analyzed by polyacrylamide gel electrophoresis. These analyses have been improved using fluorescently labeled primers and commonly available DNA sequencing machines. The protocol, which we call fluorescently labeled oligonucleotide extension (FLOE), eliminates the need for handling radioactivity and polyacrylamide. The DNA sequencer delivers data as a “trace” that is ready for quantification, which eliminates the need to trace gels separately. The data analysis is further improved by new software, Scanalyze, which we present here. We demonstrate that by using promoter mapping and footprinting, FLOE shortens experimental time, extends the stretch of analyzable sequence, and simplifies quantification compared to radioactive methods and is as sensitive in terms of detecting templates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom