z-logo
open-access-imgOpen Access
Computational Methods for Sequence Mapping of Large Combinatorial Libraries and Deduced Sequence Signatures
Author(s) -
Valérie Abécassis,
Lawrence P. Aggerbeck,
Gilles Truan,
Denis Pompon
Publication year - 2003
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/03346mt04
Subject(s) - shuffling , dna microarray , computational biology , sequence (biology) , oligonucleotide , sequence analysis , dna sequencing , biology , context (archaeology) , genetics , computer science , dna , gene , paleontology , gene expression , programming language
Here we describe a computational approach for the high-throughput sequence mapping of combinatorial libraries obtained by DNA shuffling. Original algorithms and their software implementation were developed for the automated and reliable analysis of hybridization data of differentially labeled oligonucleotide probes with PCR products spotted on DNA microarrays. This novel approach allows a context-dependent sequence attribution tolerant to fluctuations in experimental conditions and is well adapted to hybridization signals of variable qualities resulting from high-throughput PCR amplification from colonies. In addition, the analysis permits the calculation of sequence signatures that are characteristic of combinatorial library structure, defects, and diversity. The approach is of interest for the characterization and the equalization (library reduction to nonredundant structures) of combinatorial libraries involved in directed evolution and could be extrapolated to high-throughput polymorphism analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom