Buffered Non-Fermenter System for Lab-Scale Production of Secreted Recombinant His-Tagged Proteins in Saccharomyces cerevisiae
Author(s) -
Chatri Ngamkitidechakul,
Sally S. Twining
Publication year - 2002
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/02336pt02
Subject(s) - industrial fermentation , saccharomyces cerevisiae , recombinant dna , biology , biochemistry , microbiology and biotechnology , chemistry , yeast , fermentation , gene
Expression of recombinant proteins using a secretion system can minimize co-purification of contaminating host proteins. Production of His-tagged recombinant proteins in the yeast alpha-factor secretion system has previously required a fermenter system to control the growth conditions such as pH of the yeast culture. We describe an inexpensive non-fermenter system for the production of secreted recombinant His-tagged proteins in Saccharomyces cerevisiae that uses a buffered low peptone YP glycerol medium, which does not interfere with immobilized metal affinity chromatography. Maspin, a tumor suppressor serpin, was expressed as a secreted N-terminal His/FLAG-tagged protein. Purification of the soluble active recombinant protein only requires centrifugation, concentration by ultrafiltration, and Ni2+ affinity chromatography. Purified protein yields of this system are 3-5 mg/L culture medium.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom