z-logo
open-access-imgOpen Access
Assessing Sources of Variability in Microarray Gene Expression Data
Author(s) -
Susan E. Spruill,
Jun Lu,
Sarah Hardy,
B. S. Weir
Publication year - 2002
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/02334mt05
Subject(s) - microarray , microarray analysis techniques , dna microarray , microarray databases , computer science , data mining , gene chip analysis , biology , gene expression , genetics , gene
Experiments using microarrays abound in genomic research, yet one factor remains in question. Without replication, how much stock can we put into the findings of microarray experiments? In addition, there is a growing desire to integrate microarray data with other molecular databases. To accomplish this in a scientifically acceptable manner, we must be able to measure the validity and quality of microarray data. Otherwise, it would be the weakest link in any integration process. Validating and evaluating the quality of data requires the ability to determine the reproducibility of results. Data obtained from a microarray experiment designed as a feasibility test provided a unique opportunity to partition and quantify several sources of variation that are likely to be present in most microarray experiments. We use this opportunity to discuss the origins of variability observed in microarray experiments and provide some suggestions for how to minimize or avoid them when designing an experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom