z-logo
open-access-imgOpen Access
Nonradioactive Assay of FLAG®-Tagged MAPK Using ANTI-FLAG® Antibody-Coated Multiwell Plates
Author(s) -
L. Zhang,
S. Uder,
T. Juehne,
B. Brizzard,
Kiwon Song
Publication year - 2002
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/02322pf02
Subject(s) - flag (linear algebra) , mapk/erk pathway , protein kinase a , phosphorylation , kinase , microbiology and biotechnology , chemistry , biology , biochemistry , mathematics , pure mathematics , algebra over a field
We have developed a rapid, sensitive, and quantitative 96-well microplate-based nonradioactive immunoprecipitation/kinase assay to evaluate mitogen-activated protein kinase (MAPK) activity. Three quantitative nonradioactive imunoprecipitation/kinase assays of MAPK were demonstrated on a 96-well microplate coated with ANTI-FLAG M2 antibody (ANTI-FLAG M2 plate): (i) the capture of phosphorylated FLAG-tagged MAPK fusion protein (FLAG-MAPK) from phorbol esters-stimulated, FLAG-MAPK-transfected COS-7 cells, coupled with a very sensitive ELISA procedure to quantitate the level of phosphorylation of FLAG-MAPK; (ii) the in vitro kinase reaction of FLAG-MAPK activity with a substrate and ATP in the same well used to captured the phosphorylated FLAG-MAPK; and (iii) the in vitro kinase reaction of captured non-activated FLAG-MAPK by its upstream kinase from phorbol 12-myristate 13-acetate (PMA)-stimulated COS-7 cells. These results demonstrate that the ANTI-FLAG M2 plate allows for the rapid and quantitative determination of phosphorylation of FLAG-MAPK directly from stimulated, transfected cell lysate. Captured, phosphorylated FLAG-MAPK retains catalytic activity as demonstrated by the phosphorylation of Elk-1 in the same well. Furthermore, phosphorylation of captured FLAG-MAPK by the upstream kinases can be observed directly on the plate. These assays are sensitive, specific, and suitable for handling multiple samples. Thus, the ANTI-FLAG M2 plate forms the basis of a high-throughput screening platform in kinase analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom