z-logo
open-access-imgOpen Access
Viral Binding Proteins as Antibody Surrogates in Immunoassays of Cytokines
Author(s) -
Hongdong Bai,
R. Mark L. Buller,
Nanhai G. Chen,
Michael D.P. Boyle
Publication year - 2002
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/02321dd02
Subject(s) - biology , monoclonal antibody , effector , cytokine , polyclonal antibodies , computational biology , antibody , chemokine , innate immune system , immune system , immunology
Cytokines are pivotal to a balanced innate or cell-mediated immune response, can be indicative of disease progression and/or resolution, and are being evaluated as therapeutics. There is a need to purify and/or to measure key cytokines rapidly with accuracy, precision, and sensitivity. The current assay technologies, which are based on RT-PCR, immunoassays, or bioassays, are limited in their use in the clinic, in particular because of the long time (1-3 h) required to carry out the assays. An alternative approach explored here is the use of pathogen-encoded cytokine-binding proteins, which have Kd in the nanomolar range. It is anticipated that pathogens have evolved binding proteins, antagonists, and/or specific neutralizing phenotypes directed against key signaling and effector molecules involved in the multifaceted host defense system. Thus, by screening the genomes of a wide range of microbial agents, we would expect to find coding sequences for binding proteins for the most important cytokines. Consistent with this view is the identification of poxvirus genes encoding binding activities for TNF type I and type II interferons, interleukin (IL)-1beta, IL-18, and beta-chemokines. These high-affinity receptors have the potential to act as surrogate antibodies in a number of applications in cytokine quantification and purification and could be potentially useful reagents to complement the existing panel of anti-cytokine, monoclonal, polyclonal, or engineered antibodies that are currently available.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom