z-logo
open-access-imgOpen Access
pAd5-Blue: Direct Ligation System for Engineering Recombinant Adenovirus Constructs
Author(s) -
Mauro Pires Moraes,
Gregory A. Mayr,
Marvin J. Grubman
Publication year - 2001
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/01315st05
Subject(s) - biology , recombinant dna , restriction enzyme , multiple cloning site , insert (composites) , plasmid , gene , viral vector , vector (molecular biology) , adenoviridae , cloning (programming) , microbiology and biotechnology , genetics , virology , mechanical engineering , computer science , engineering , programming language
We have engineered a new vector that makes use of direct ligation for the generation of replication-defective recombinant adenovirus constructs. In the pAd5-Blue vector, unique yet common restriction endonuclease sites exist, that allow cloning in a directional manner of a gene of interest under control of a cytomegalovirus promoter, upstream of a simian virus 40 polyadenylation signal. The insertion of the new gene replaces the beta-galactosidase alpha gene fragment in the pAd5-Blue vector, allowing the identification of recombinants in bacterial culture by the selection of white colonies. Plasmid DNA from white colonies is digested with PacI and transfected into 293 cells, resulting in the generation of a homogenous population of adenovirus containing the gene of interest. The pAd5-Blue vector system does not rely on recombination either in mammalian or bacterial cells. Furthermore, because of compatible overhangs, the variety of restriction endonucleases that can be used to generate the inserted gene gives flexibility to the process for greater ease of use. The system is quick and straightforward, allowing the generation of recombinant adenoviruses within three weeks of obtaining an appropriate insert. This new vector should greatly enhance the ease and speed with which new recombinant adenovirus constructs can be made.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom