z-logo
open-access-imgOpen Access
Large-Scale Purification of a Stable Form of Recombinant Tobacco Etch Virus Protease
Author(s) -
Louise Lucast,
Robert Batey,
Jennifer A. Doudna
Publication year - 2001
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/01303st06
Subject(s) - tobacco etch virus , recombinant dna , protease , lysis , enzyme , biochemistry , fusion protein , biology , mutant , histidine , escherichia coli , virus , inclusion bodies , affinity chromatography , specific activity , in vitro , virology , plant virus , gene , potyvirus
Tobacco etch virus NIa proteinase (NIa-Pro) has become the enzyme of choice for removing tags and fusion domains from recombinant proteins in vitro. We have designed a mutant NIa-Pro that resists autoproteolytic inactivation and present an efficient method for producing large amounts of this enzyme that is highly pure, active, and stable over time. Histidine-tagged forms of both wild-type and mutant NIa-Pro were overexpressed in E. coli under conditions in which greater than 95% of the protease was in the insoluble fraction after cell lysis. An inclusion body preparation followed by denaturing purification over a single affinity column and protein renaturation yields greater than 12.5 mg enzyme per liter of bacterial cell culture. NIa-Pro purified according to this protocol has been used for quantitative removal of fusion domains from a variety of proteins prepared for crystallization and biochemical analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom