z-logo
open-access-imgOpen Access
Use of Short-Lived Green Fluorescent Protein for the Detection of Proteasome Inhibition
Author(s) -
Cynthia Andreatta,
Piruz Nahreini,
Alicia R. Hovland,
Bipin Kumar,
Judith EdwardsPrasad,
Kedar N. Prasad
Publication year - 2001
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/01303dd03
Subject(s) - lactacystin , hek 293 cells , proteasome , mg132 , proteasome inhibitor , green fluorescent protein , biology , microbiology and biotechnology , flow cytometry , western blot , reporter gene , viability assay , transfection , cell culture , gene expression , gene , biochemistry , genetics
Human embryonic kidney (HEK293) cells were stably transduced with a retroviral vector containing an expression cassette for a short-lived green fluorescent protein (d2EGFP) and the neomycin resistance gene (Neor). When Neor HEK293 clones were treated with proteasome inhibitors, lactacystin or MG132, an increase in the constitutive levels of d2EGFP expression was observed. Based on flow cytometry, proteasome inhibitors induced a 5- to 10-fold increase in the fluorescent intensity of d2EGFP in HEK293 cell clones. However, in the presence of proteasome inhibitors, HEK293 clones showed a 4- to 6.5-fold increase in d2EGFP concentration as determined by western blot analysis. Our data suggest that d2EGFP is a useful indicator of proteasome inhibition. Therefore, stable expression of d2EGFP in mammalian cells is potentially useful for high-throughput screening of cDNAs or pharmaceutical drugs that repress proteasome functions in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom