Redefinition of the Yeast Two-Hybrid System in Dialogue with Changing Priorities in Biological Research
Author(s) -
Ilya G. Serebriiskii,
Vladimir Khazak,
Erica A. Golemis
Publication year - 2001
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/01303dd02
Subject(s) - computational biology , computer science , protein–protein interaction , identification (biology) , systems biology , biology , biochemical engineering , artificial intelligence , engineering , genetics , ecology
Examination of the pattern of reagent creation and application in the two-hybrid system since 1989 reveals the expansion of a simple core technology to address increasingly sophisticated problems in protein interaction. As the technology has matured, its clear suitability for large-scale proteomic projects has made a major focus of its application the generation of global organismal protein interaction networks. In an inversion of emphasis, the increasing availability of such information now provides a master plan with the potential to specify the most promising directions for biological investigations (i.e., by directing the physiological validation of predicted critical protein-protein interactions). Recent derivatives of the two-hybrid system enable the targeting of such key interactions by facilitating the identification of essential amino acids conferring protein interaction specificity and of small molecules that selectively disrupt defined interaction pairs. Finally, the creation of mammalian expression systems based on two-hybrid principles became a new tool to create and probe novel biological systems. Taken in sum, this trajectory emphasizes the point that the creation of tools and the evolution of the idea of what is an interesting biological problem are in intimate dialogue.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom