z-logo
open-access-imgOpen Access
Tightly Regulated, β-Estradiol Dose-Dependent Expression System for Yeast
Author(s) -
Connie Ying Gao,
Jennifer L. Pinkham
Publication year - 2000
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/00296st02
Subject(s) - yeast , gene expression , biology , microbiology and biotechnology , expression (computer science) , saccharomyces cerevisiae , genetics , chemistry , biochemistry , gene , computer science , programming language
We have refined the regulated expression of UASGAL1, 10-driven genes in yeast by modifying a vector encoding the beta-estradiol inducible activator, GAL4.ER.VP16 (GEV). The expression of GEV was placed under the regulation of the low-level, constitutive MRP7 promoter, and beta-estradiol-regulated expression was monitored by the expression of an integrated UASGAL10-lacZ reporter and by immunoblot analysis of a UASGAL1-regulated gene product. Target gene expression regulated by low levels of GEV has several advantages over the standard galactose-inducible expression systems. (i) Most importantly, the target gene expression is undetectable in the absence of hormone; (ii) target gene expression is beta-estradiol dose-dependent, and variable levels of target gene expression from low to several hundred-fold induction can be achieved; and (iii) induction or depletion studies can be conducted independent of carbon source in gal4 delta strains. In addition, any UASGAL1,10 expression construct can be used without modification of the target gene or many gal4 delta host strains, and GEV vectors are compatible with other inducible yeast expression systems. This method may be useful to researchers investigating the functions of essential genes, dominant negative mutants, mitochondrial genes, and viral, plant, and mammalian genes in yeast assay systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom