z-logo
open-access-imgOpen Access
Tissue-Specific Microdissection Coupled with ProteinChip ® Array Technologies: Applications in Cancer Research
Author(s) -
Ferdinand von Eggeling,
Hanna Davies,
Lee Lomas,
Wolfgang Fiedler,
Kerstin Junker,
U. Claussen,
G. Ernst
Publication year - 2000
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/00295rr02
Subject(s) - proteomics , microdissection , laser capture microdissection , computational biology , protein microarray , biology , microbiology and biotechnology , gel electrophoresis , dna microarray , gene , gene expression , genetics
Analysis of whole genomes to monitor specific changes in gene activation or changes in gene copy number due to perturbation has recently become possible using DNA chip technologies. It is now becoming apparent, however, that knowing the genetic sequence encoding a protein is not sufficient to predict the size or biological nature of a protein. This can be particularly important in cancer research where posttranslational modifications of a protein can specifically lead to the disease. To address this area, several proteomic tools have been developed. Currently the most widely used proteomics tool is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), which can display protein expression patterns to a high degree of resolution. However, 2D-PAGE can be time consuming; the analysis is complicated and, compared with DNA techniques, is not very sensitive. Although some of these problems can be alleviated by using high-quality homogeneous samples, such as those generated using microdissection techniques, the quantity of sample is often limited and may take several days to generate sufficient material for a single 2D-PAGE analysis. As an alternative to 2D-PAGE, a preliminary study using a new technique was used to generate protein expression patterns from either whole tissue extracts or microdissected material. Surface-enhanced laser desorption and ionization allows the retention of proteins on a solid-phase chromatographic surface or ProteinChip Array with direct detection of retained proteins by time-of-flight mass spectrometry. Using this system, we analyzed tumor and normal tissue from head and neck cancer and microdissected melanoma to determine differentially expressed proteins. In particular, comparisons of the protein expression patterns from microdissected normal and tumor tissues indicated several differences, highlighting the importance of extremely defined tissue lysates for protein profiling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom