z-logo
open-access-imgOpen Access
Two-color fluorescent cytosine extension assay for the determination of global DNA methylation
Author(s) -
Gu Zhou,
Craig L.J. Parfett,
Cathy CummingsLorbetskie,
Gong-Hua Xiao,
Daniel Desaulniers
Publication year - 2017
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000114533
Subject(s) - dna methylation , microbiology and biotechnology , methylation , dna , cytosine , restriction enzyme , chemistry , fluorescence , biology , biochemistry , gene expression , gene , physics , quantum mechanics
Here, we present a DNA restriction enzyme-based, fluorescent cytosine extension assay (CEA) to improve normalization and technical variation among sample-to-sample measurements. The assay includes end-labeling of parallel methylation-sensitive and methylation-insensitive DNA restriction enzyme digests along with co-purification and subsequent co-measurement of incorporated fluorescence. This non-radioactive, two-color fluorescent CEA (TCF-CEA) was shown to be a relatively rapid and accurate, with 3-fold greater precision than the one-color CEA. In addition, TCF-CEA provided an index of global DNA methylation that was sensitive to differences >5%. TCF-CEA results were highly correlated with LUminometric Methylation Assay (LUMA) results using human liver cell lines (HepG2, HepaRG, HC-04) as well as a human liver primary cell culture. Hypomethylation was observed in cells treated with the de-methylating agent 5-aza-2'-deoxycytidine. These results demonstrate that TCF-CEA provides a simple method for measuring relative degrees of global DNA methylation that could potentially be scaled up to higher-throughput formats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom