z-logo
open-access-imgOpen Access
Native protein denaturation using urea
Author(s) -
Kyle K. Biggar,
Neal J. Dawson,
Kenneth B. Storey
Publication year - 2017
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000114501
Subject(s) - denaturation (fissile materials) , cooperativity , kinetics , chemistry , urea , protein stability , protein folding , biophysics , biochemistry , biology , physics , nuclear chemistry , quantum mechanics
Protocol Summary Here we present a new protocol to analyze protein unfolding kinetics using a quantified real-time thermocycler. This technique enables the analysis of a wide range of denaturants (and their interactions with temperature change) on protein stability in a multi-well platform, where samples can be run in parallel under virtually identical conditions and with highly sensitive detection. Using this set-up, researchers can evaluate the half-maximal rate of protein denaturation (Knd), maximum rate of denaturation (Dmax), and the cooperativity of individual denaturants in protein unfolding (µ-coefficient).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom