Transposon-directed base-exchange mutagenesis (TDEM): a novel method for multiple-nucleotide substitutions within a target gene
Author(s) -
Yun Cheol Kim,
Hui Sun Lee,
Sukjoon Yoon,
Sherie L. Morrison
Publication year - 2009
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000113152
Subject(s) - transposable element , transposon mutagenesis , mutagenesis , mutant , genetics , biology , gene , complementation , mutation , frameshift mutation , base pair , computational biology
In this report we describe transposon-directed base-exchange mutagenesis (TDEM), an efficient and controllable method for introducing a mutation into a gene. Each round of TDEM can remove up to 11 base pairs from a randomly selected site within the target gene and replace them with any length of DNA of predetermined sequence. Therefore, the number of bases to be deleted and inserted can be independently regulated providing greater versatility than existing methods of transposon-based mutagenesis. Subsequently, multiple rounds of mutagenesis will provide a diverse mutant library that contains multiple mutations throughout the gene. Additionally, we developed a simple frame-checking procedure that eliminates nonfunctional mutants containing frameshifts or stop codons. As a proof of principle, we used TDEM to generate mutant lacZalpha lacking alpha-complementation activity and recovered active revertants using a second round of TDEM. Furthermore, a single round of TDEM yielded unique, inactive mutants of ccdB.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom