z-logo
open-access-imgOpen Access
Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system
Author(s) -
Vladimir Ratushny,
Erica A. Golemis
Publication year - 2008
Publication title -
biotechniques/biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000112797
Subject(s) - two hybrid screening , computational biology , protein–protein interaction , biology , proteomics , systems biology , biological network , interaction network , gene , genetics
In 1983, while investigators had identified a few human proteins as important regulators of specific biological outcomes, how these proteins acted in the cell was essentially unknown in almost all cases. Twenty-five years later, our knowledge of the mechanistic basis of protein action has been transformed by our increasingly detailed understanding of protein-protein interactions, which have allowed us to define cellular machines. The advent of the yeast two-hybrid (Y2H) system in 1989 marked a milestone in the field of proteomics. Exploiting the modular nature of transcription factors, the Y2H system allows facile measurement of the activation of reporter genes based on interactions between two chimeric or “hybrid” proteins of interest. After a decade of service as a leading platform for individual investigators to use in exploring the interaction properties of interesting target proteins, the Y2H system has increasingly been applied in high-throughput applications intended to map genome-scale protein-protein interactions for model organisms and humans. Although some significant technical limitations apply, Y2H has made a great contribution to our general understanding of the topology of cellular signaling networks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here