Tikhonov Regularization for Nonparametric Instrumental Variable Estimators
Author(s) -
Patrick Gagliardini,
Olivier Scaillet
Publication year - 2011
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.947094
Subject(s) - instrumental variable , tikhonov regularization , nonparametric statistics , estimator , econometrics , regularization (linguistics) , mathematics , statistics , computer science , artificial intelligence , inverse problem , mathematical analysis
We study a Tikhonov Regularized (TiR) estimator of a functional parameter identified by conditional moment restrictions in a linear model with both exogenous and endogenous regressors. The nonparametric instrumental variable estimator is based on a minimum distance principle with penalization by the norms of the parameter and its derivatives. After showing its consistency in the Sobolev norm and uniform consistency under an embedding condition, we derive the expression of the asymptotic Mean Integrated Square Error and the rate of convergence. The optimal value of the regularization parameter is characterized in two examples. We illustrate our theoretical findings and the small sample properties with simulation results. Finally, we provide an empirical application to estimation of an Engel curve, and discuss a data driven selection procedure for the regularization parameter.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom